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Strange nonchaotic attractors~SNAs!, which are realized in many quasiperiodically driven nonlinear sys-
tems, are strange~geometrically fractal! but nonchaotic~the largest nontrivial Lyapunov exponent is negative!.
Two such identical independent systems can be synchronized by in-phase driving: Because of the negative
Lyapunov exponent, the systems converge to a common dynamics, which, because of the strangeness of the
underlying attractor, is aperiodic. This feature, which is robust to external noise, can be used for applications
such as secure communication. A possible implementation is discussed and its performance is evaluated. The
use of SNAs rather than chaotic attractors can offer some advantages in experiments involving synchronization
with aperiodic dynamics.@S1063-651X~97!10612-2#

PACS number~s!: 05.45.1b
e
e

te
tio
th
bu

io
ex
m
rin

i
si
th
a

o
m
pe

s-
b
n
at

e-
nt
o
te
a

-
o

of
the

ame

ms
see

g

ter-

al

mu-
be

m

itial

-
at
n

Pecora and Carroll@1# showed that identical~or nearly
identical! nonlinear systems can be made to synchroniz
coupled by a common drive signal. If one considers the ov
all system as separated into drive and response subsys
then a necessary and sufficient condition for synchroniza
to occur is that the Lyapunov exponents corresponding to
response subsystem are all negative. This property is ro
and is easy to realize in the laboratory@1–3#, even when the
dynamics of the drive is chaotic and unstable. An applicat
of chaotic synchronization that has been extensively
plored is the possibility of secure communications: A nu
ber of different schemes based on a variety of coding p
ciples have been proposed@4–7#.

The property of synchronization of nonlinear systems
extremely general. One situation where this is most ea
achieved is between quasiperiodically driven systems in
regime wherein the dynamics lie on strange nonchaotic
tractors~SNAs! @8,9#. The purpose of this Brief Report is t
suggest that such systems possess advantages that
them ideal for applications in communications that use a
riodic signals.

SNAs, which are found in quasiperiodically driven sy
tems, are geometrically strange, namely, they are fractal,
the largest nontrivial Lyapunov exponent is negative a
hence the dynamics are not chaotic. They can be cre
through a variety of mechanisms@10# and exist over a range
of parameter values~i.e., they are not exceptional or nong
neric!. SNAs have been observed in several experime
systems@11,12# and have been verified through the use
power spectral methods and attractor dimension estima
Although the largest nontrivial Lyapunov exponent is neg
tive, the dynamics areaperiodicsince the underlying attrac
tor is strange: This makes it difficult to deduce the Lyapun
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exponents, or indeed thenonchaotic dynamics, by attractor
reconstruction using standard methods.

Synchronization of two such systems is trivial because
the negative Lyapunov exponents. Regardless of where
systems are started, they eventually converge to the s
dynamics so long as thephaseof the quasiperiodic driving is
matched. There is no requirement of coupling the syste
~other than the coupling implicit in the matched phase;
below!.

As an example of this behavior, consider the followin
system introduced by Zhou, Moss, and Bulsara@13#, which
describes a driven-damped superconducting quantum in
ference device:

ẍ1kẋ52~x1b sin 2px!1q1 sin v1t1q2 sin v2t,
~1!

where the ratio of frequencies is taken to be irration
v1 /v25(A511)/2. This system~and related variants! has
been extensively studied in both numerical and analog si
lations and is thus a typical example of a system that can
experimentally realized. An identical copy of this syste
with phase differencef has the equation of motion

ÿ1kẏ52~y1b sin 2py!1q1 sin v1~ t1f!

1q2 sin v2~ t1f!. ~2!

The two systems can be synchronized regardless of the in
values ofx,ẋ,y,ẏ, so long as there is no phase lagf50 and
the parameters~herek,b and q1 ,q2! are such that the dy
namics are on a SNA. Explicitly, it is observed th
ux(t)2y(t)u→0 rapidly; results for a typical orbit are show
in Fig. 1~a!.

Rewriting the above system in autonomous form
7294 © 1997 The American Physical Society
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ẋ15x2 ,

ẋ252kx22~x11b sin 2px1!1q1 sin v1x31q2 sin v2x3 ,

ẋ351,

ẏ15y2 , ~3!

ẏ252ky22~y11b sin 2py1!1q1 sinv1y31q2 sinv2y3,

ẏ351

makes it evident that phase matching corresponds to rep
ing y3 in Eq. ~3! by x3 and thereby coupling the two system
This then conforms to the general framework of synchro
zation in the manner of Pecora and Carroll@1# with the x
system the drive and they effectively the response.

In other parameter ranges, the system in Eq.~1! can be
chaotic. In such a case, both the drive and the response
positive Lyapunov exponents and synchronization cannot
cur; see Fig. 1~b!. When there is a phase mismatch, name
if fÞ0 in Eq. ~2!, again synchronization does not occ
@Fig. 1~c!#, even when the parameters correspond to S
dynamics.

Secure communications using aperiodic dynamics
been implemented in several ways@4–7# and the technique
of synchronization with SNAs rather than chaotic attract
can be employed in several of them. It should be mention
however, that some of the simpler schemes have been sh
to be susceptible to unmasking@14# by inference of the un-
derlying attractor.

FIG. 1. Time series of the signals from the two systemsx1(t)
~solid line! and y1(t) ~dashed line!. The parameters are set
k5b52, q152.768, andv152.25. ~a! Whenq250.88 andf50,
the dynamics are on a SNA and the two systems synchronize~b!
Whenq250.38 andf50, the dynamics are on a chaotic attract
The Lyapunov exponents are all positive and synchronization is
possible.~c! Whenq250.88 andfÞ0, the dynamics are on a SNA
but synchronization does not occur.
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The most direct method of secure communication throu
the use of chaotic synchronization uses a chaotic signa
mask information@4#. The alternate strategy suggested he
is to use the signal from a strange nonchaotic system in
analogous manner, by transmitting the low-amplitu
information-bearing signalm(t) that is added to~and masked
by! the output from the first systemx(t), namely,
x8(t)5x(t)1m(t). It is also necessary to simultaneous
transmit a means of phase locking, say, a train ofd-function

FIG. 2. Robustness of synchronization with respect to noise
alters the parameters of the response system, as described i
text. The values of the parameters arek5b52, q152.768,
q250.88, andv152.25 and the noise strength iss51022 for ~a!
m[b @see Eq.~4!#, ~b! m[q2 , and ~c! m[v2 . Reduction of the
noise strength improves the synchronization in the last case~d!
wheres51024 andm[v2 .

FIG. 3. Demonstration of the viability of the secure commun
cation scheme. ~a! The signal being communicated i
m(t)50.1 sinv2t ~dotted line!, which is added to the output from
the SNA, i.e.,x8(t) ~solid line!. The parameterq2 of the response
system differs from that of the drive by 10%. Other SNA param
eters are as in Fig. 1~a! and the recovered signal is the dashed cur
~b! The signal being communicated ism(t)50.1 sinv2t sinv1t
~dotted line!, which is added to the output from the SNA~solid
line!. The frequencyv2 of the response system has fluctuation
with s51023. Other SNA parameters are as in Fig. 1~a!. The re-
covered signal is the dashed curve. Thed-function spikes inx8(t)
are used by the response system for phase matching.
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pulses. The signalm(t) can be recovered by allowing th
systems to synchronize and subtracting the output of the
ond system, i.e.,x8(t)2y(t).

Since the two systems evolve independently, the effec
additive noise is minimal: noise added tox8(t) will be un-
changed upon subtraction. On the other hand, it is neces
to consider the mismatch between the transmitter system
the response in some detail. One way to explore the effec
such mismatch is by introducing fluctuations in the para
eters of the response

m5m0@11sj~ t !#, ~4!

wheres is the noise amplitude,j(t) is ad-correlated random
variable with zero mean, andm0 is the value of the paramete
in the transmitter system. For the response system in Eq.~2!,
we considerm[q2 , b, andv2 . Results are shown in Fig.
for the case of noise amplitudes51022 for the three param-
eters indicated above. The plot ofx vs y shows that the
degree of synchronization in the presence of noise is fa
good, except for the case ofm[v2 , namely, when the qua
siperiodic driving frequency is subject to fluctuations. I
deed, variation of the parametersq2 and b by up to 10%
does not significantly alter the synchronization except
short bursts in time. The drive frequency is much more s
sitive to fluctuations and only by reducing the noise amp
tude to 1024 is it possible to greatly improve the synchron
zation in this case@Fig. 2~d!#.

The viability of the above scheme is demonstrated us
the SNA of Eqs.~1! and~2! and the results are shown in Fig
3, wherein the signal to be communicated is a sinuso
form. In the absence of noise, the recovery of the signa
exact~and is therefore not shown!; with noise added follow-
ing Eq. ~4! in the driving frequency or in the other param
eters, the recovery of the signal is of good quality. Inde
even when the parameters of the two systems do not ma
g
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signal recovery is possible: In Fig. 3~a! the parametersq2 of
thex andy systems differ by 10%. The occasional errors d
to loss of synchronization that are apparent in Fig. 3 do
persist over long times.

Note that it is important for this means of application th
interception ofx8(t) can have no potential value in the a
sence of knowledge of the underlying dynamical syst
since the dynamics is intrinsically aperiodic. One can u
standard methods to reconstruct the dynamics@15#, but the
extraction of reliable values for~small! negative Lyapunov
exponents from experimental time-series data for SNAs
proved to be difficult@11,12#. Thus it may be more problem
atic to reliably reconstruct the underlying attractor, in co
trast to the example of the Lorenz system, which was c
sidered by Perez and Cerdeira@14#.

Related schemes that use chaotic attractors, for exam
the modulation-detection procedure described by Cuomo
Oppenheim@4#, can be similarly adapted to the case
SNAs. A somewhat different implementation of secure co
munications using SNAs that transmits digital informati
by switching parameter values has also been proposed
cently @16#.

The synchronizing property arises directly from the use
a common in-phase driving: The negative Lyapunov ex
nents alone do not guarantee that thex and y signals will
coincide.~In the extreme case when both systems are in
grable, in the absence of a common driving term, there w
be no synchronization.! Other applications that use the sy
chronization of chaotic systems@17# can also be effected
using strange nonchaotic systems. In general, as a co
quence of the negative Lyapunov exponents, the stability
robustness using SNAs is greater than that with compar
chaotic attractors. This may make quasiperiodically driv
systems particularly suitable for applications that involve
synchronization of large numbers of nonlinear dynami
systems.
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